
M
at

rix
St

or
e

Ar

ch
ite

ct
ur

e

C
on

te
nt

s
1	 |	Overview

2	 |	MatrixStore Software Overview

3	 |	MatrixStore Architecture vs
		 Other Object Storage

4	 |	Digital Content Governance

5	 |	MatrixStore Hardware Overview

6	 |	MatrixStore Core Concepts

7	 |	Process-in-Place

8	 |	 Index

03

04

13

15

16

20

44

45

3©Object Matrix Ltd 2003-2020. All Rights Reserved.

Overview1
This document describes the thinking and rational behind the MatrixStore
products. The document is written on a technical level for those who care
about the nuts and bolts of how data is kept and accessed securely and
forever within MatrixStore storage.

It is the aim of this document:

•	 To provide a deep understanding of the software architectures involved and to describe why
design decisions were taken / compare those decisions to alternatives.

•	 To explain key “how-to” mantras for using the solution.

•	 To encourage discussion via peer-led review / to encourage design improvements and
new functionality.

©Object Matrix Ltd 2003-2020. All Rights Reserved. 4

MatrixStore
Software Overview

2

MatrixStore Server Software
MatrixStore Server Software runs on computer servers commonly called “nodes”.

Each node contains storage capacity, CPU processing power and network connectivity (see
MatrixStore Hardware Overview for further information).

MatrixStore Server Software provides the logic to join nodes together into a cluster. Commonly the
cluster of nodes is simply referred to as “MatrixStore”.

Other critical MatrixStore Server Software
features include enabling the cluster to:

•	 Act as an “Object Storage Solution” and
single namespace.

•	 Provide automated high resilience against
hardware failure.

•	 Provide metadata: handling; extraction;
storage; search.

•	 Enact “Digital Content Governance”
including allowing the user to set data
storage policies, replication, audits and
other tasks.

•	 Automate load balancing, which in turn
allows a mix of hardware to be used
(e.g. if expandingthe cluster in the future).

•	 Ensure future proof access to data.

2.1

Figure 1 - Nodes with / without faceplate

Figure 2 - MatrixStore cluster

©Object Matrix Ltd 2003-2020. All Rights Reserved. 5

M
ATR

IX
STO

R
E SO

FTW
A

R
E O

VER
VIEW

2

Object Storage
vs File Systems
Object storage is a way of describing a storage
system that has a base logical building block
of “objects”. Storage Objects effectively have
a non-hierarchical relationship making the
number of objects stored easy to scale and
the overhead of storing them minimal. This is
often compared to filesystem storage, which
is hierarchical by nature and has a filesystem
database (metadata server) overhead.

Objects consist of three parts: data, metadata
and data storage policy information.

•	 Data: can be any piece of information,
e.g., a media file or a data record.

•	 Metadata: tags or key-value pairs; typed or
un-typed – typically information about the
data that is in the object and sometimes
used to find the object.

•	 Policy control information: key about how
the object should live. Often this information
is used by the system – e.g., how many
instances of the object to keep, how long
to keep the object, who can access the
object and whether the objects should be
geographically dispersed, etc.

The objects are kept within MatrixStore.
An often asked question is, “what are the
advantages of object storage over a file
system?” Object Matrix has in depth papers
on this subject, but in short:

•	 File systems primarily provide a tree of
directories within which files can be dropped.
This is a very top-down restricted view of the
world and this restriction has several issues:

2.2

•	 Over time the meaning of the rigid file
structures becomes lost and fragmented.

•	 Trawling through directories to drop files
into the correct one, or, to obtain the right
file is time consuming.

•	 When dealing with millions (or billions)
of files file systems can be become
less efficient.

•	 Fragmented file systems over multiple
geographic locations work badly.

•	 File systems treat metadata like a bolt-on,
if at all. It is rarely ever searchable, and is
rarely automatically preserved. With object
storage it is automatically kept with the
object: transported, replicated, and generally
preserved at the same levels as the
essence itself.

•	 Object storage systems don’t
have the overhead of the filesystem
metadata controllers.

•	 File systems are normally built with data
blocks on block storage devices and
typically work badly if block storage returns
results with different latencies (i.e., file
systems typically require hardware to be of
the same or a similar generation).

•	 This adds up to object systems being
inherently scalable to billions of objects,
e.g., Amazon, Google and Facebook use
object storage for their solutions. The
architecture is flexible (e.g., for replication)
and data is searchable.

In the media industry, with MatrixStore it could
be added:

•	 Built-in (to the core of MatrixStore) media
meta data analysis and extraction along
metadata indexing and search functionality.

•	 Built to handle large media “objects”.

•	 Built-in full audit trail handling.

•	 API integrations bring tight coupling between
MatrixStore and its technical partners.

Amongst other features.

These features and many more besides are
described in greater detail throughout the
document. As mentioned, the key concept
of the MatrixStore Server is that it provides
Object Storage.

©Object Matrix Ltd 2003-2020. All Rights Reserved. 6

M
ATR

IX
STO

R
E SO

FTW
A

R
E O

VER
VIEW

2

MatrixStore Node
Operating System
A stripped down and optimised version of
Ubuntu Server is used at the operating system
level. Ubuntu has been selected for its high
reliability and ability to support a wide range
of hardware configurations. However, the
Ubuntu build has been hardened for usage
with MatrixStore:

•	 All services not required are either removed
or turned off. Since very few externally
communicating services are left switched
on this helps to protect MatrixStore from
operating system security vulnerabilities and
improves the reliability (uptime) of what is
already considered to be one of the most
stable of operating systems.

•	 The build is optimised for performance for
data storage.

•	 The XFS (file system) is used on each node
within Ubuntu. Again, this was selected
for its extremely strong reliability track
record, as well as its built-in resistance to
fragmentation. MatrixStore Server Software
is largely independent of the operating
system and has previously been run on
various operating systems including our own
distribution of a highly secure Linux kernel
and Mac OSX.

Other notes:

•	 Fragmentation is auto monitored and de-frag
tools are auto run if necessary.

•	 The operating system is completely hidden
from the user – admin and maintenance tools
are the sys admins access to the nodes. This
has the major benefit that mistakes can’t be
made by an admin at the operating system
level endangering data.

Node Software Behaviours
MatrixStore Server auto-boots on each node
running on top of the operating system.
Primarily written in Java, it occasionally calls
on a few C libraries and on operating system
scripts. Underlying fundamentals in the server
layer are:

•	 Self-sufficient: each node is able to run
without a high dependency on services from
other nodes.

•	 Lightweight inter-node communication: by
keeping communication between nodes to
a minimum the cluster is highly-scalable (by
avoiding inter-node traffic noise).

•	 Highly-reliable: nodes should be able
to run for many months at a time without
requirement for reboot. This has been
witnessed in real-world usage.

Architecturally the server is split into three
layers, a “system layer”, a “services” layer
and a “process-in-place” layer. System layer
is a minimal layer that is intended to be fairly
static, provide security protocols, and to
gather hardware information. Services layer
handles all high-level cluster functionality, client
connections, etc. The process in place (PiP)
layer contains applications to examine media
data and to, e.g., extract metadata from that
media data.

2.3

2.4

MatrixStore server software is written in Java, C,
and Python programming languages.

•	 All API access to the cluster via MatrixStore
APIs (both management and data APIs) is via
certificated access.

•	 Data transmissions can be optionally
encrypted. Certificates and checksums are
always encrypted and/or sent via encrypted
channels.

©Object Matrix Ltd 2003-2020. All Rights Reserved. 7

M
ATR

IX
STO

R
E SO

FTW
A

R
E O

VER
VIEW

2

NTP Connection
MatrixStore servers can be connected to an NTP server to set system time to the UTC world clock.

MatrixStore Clients
Client connectivity to the cluster is always
through one of two APIs:

•	 MatrixStore API: C or Java. This API allows
connectivity for data storage, retrieval,
search, etc operations. This API has been
programmed to by numerous 3rd companies.
•	 MatrixStore APIs guarantees security,

cluster location discovery, data
transmission retries and much more
besides.

•	 MatrixStore Management API: REST
interface. This API allows higher level
operations such as user creation and statistic
information gathering.

Clients can be on MacOS, Windows, various
Linux versions.

Clients communicate with the server using TCP/
IP. UDP is used by some maintenance tools.

2.5

2.6

Client Applications
The following applications are provided by Object Matrix. (It is worth noting that all data written via
the MatrixStore API can be read by any Object Matrix application):

2.7.1 DropSpot
A client GUI application for performing data archive / retrieval / search. DropSpot is multithreaded
and provides strong job control and verification – it is typically used for data ingest tasks, e.g.,
camera data on to the storage. Metadata can be added when data is ingested via a highly
customisable metadata entry form. Advanced search can be performed using that metadata.

Runs on: Mac, Windows, Linux.

2.7

Figure 4 - DropSpot metadata form

Figure 3 - DropSpot main interface

©Object Matrix Ltd 2003-2020. All Rights Reserved. 8

M
ATR

IX
STO

R
E SO

FTW
A

R
E O

VER
VIEW

2
2.7.2 MatrixStore Vision
MatrixStore Vision is a webserver that enables connecting Web browsers to search, preview, select,
add metadata, and upload and download data. 3rd party transcode engines such as Elemental,
Ortana Cubix, Glookast, Root6 ContentAgent, Telestream Vantage, Drastic or FFMPEG can be
used to generate proxies that can be viewed in Vision.

Application server runs on: Linux.

1	Pre MatrixStore v4.1 monitoring was carried out via a Zabbix based application, v4.1 onwards begins to migrate the
	 monitoring towards the single MatrixStore Sense interface.

2	Roadmap is not fixed and from time to time is subject change.

2.7.3 MatrixStore Sense
Sense provides a analytics and monitoring dashboard for MatrixStore1. Analytics currently available
and planned in the 2020 Sense roadmap2 include:

•	 Cluster and Node status and history

•	 Vault usage and history stats

•	 Application usage stats

•	 User/machine usage stats

•	 Full system alerts and monitoring capabilities

•	 Plugins for other storage devices that the
customer may be using, including cloud
plugins for stats from cloud services

Figure 5 - MatrixStore Vision interface

Application server runs on: Linux.

©Object Matrix Ltd 2003-2020. All Rights Reserved. 9

M
ATR

IX
STO

R
E SO

FTW
A

R
E O

VER
VIEW

2

Future expansions of this module will allow for deeper data analysis, usage and content analysis.
This will answer questions such as “has a project been used in the last 60 days”, “how much audio
data do I have” and “is my data being kept on the correct storage tier”.

2.7.4 MXFS (MatrixStore File System)
This filesystem can be launched on a client
machine to provide file system type access
to the cluster from that machine. The client
machine will see the cluster as a drive letter
/ Volume. In the background MXFS sends
and receives data to/from the cluster using
MatrixStore API calls. Some of the advantages
of MXFS is that it doesn’t need to cache data
at the client machine, and rather can map
byte read and write requests directly on to the
objects themselves. This avoids all types of
issues such as client machine crashes, and
means that when a file is written the user knows
that it is safely on MatrixStore. When reading

a file data can be random accessed or
streamed / contiguously read. This differs
from some object storage platforms that
read files in randomly positioned chunks
(that method, whilst it can be efficient doesn’t
work in many media workflows that require
a consistent and fast time to first byte and
time to continue streaming).

MXFS is available with MatrixStore without
a requirement for licenses (ie at no additional
cost). MXFS is currently one of the most efficient
ways to read/write data to MatrixStore, second
only to MatrixStore API access for performance.

Runs on: Mac, Windows, Linux.

Figure 7 - Graphic design vault mounted with MXFS

Figure 6 - MatrixStore Sense interface

©Object Matrix Ltd 2003-2020. All Rights Reserved. 10

M
ATR

IX
STO

R
E SO

FTW
A

R
E O

VER
VIEW

2

2.7.6 MatrixStore InterConnect
Integrates with Avid Interplay through Interplay Web Services to allow the archiving and retrieving
of Interplay data. To perform archiving/retrieval of media assets the user simply uses the Interplay
interface. InterConnect is feature rich, e.g., the user can select to only archive certain video
resolutions, can archive sequences, will detect when sequences have been changed or media
assets updated, can chose to delete after archive from Interplay (in which case the system works
out what can and can’t be removed) and many other features besides.

Runs on: Windows.

2.7.5 MatrixStore Move2 (SGL / Sony
ODA / S3 / Xendata / SpectraLogic
BlackPearl)
Move2 is used to control hierarchical storage
management between a vault (see MatrixStore
Concepts) on the MatrixStore cluster and 3rd
party systems such as LTO or optical archive
systems. The applications can move data on
demand from a user or according to business
rules (age etc). When data is archived to a 3rd
party system the metadata can also optionally
be archived. The metadata also remains on
the MatrixStore system to enable search and
retrieval of the objects. DropSpot and Vision can
be used to restore data.

Move2SGL refers to SGL Flashnet
from Masstech.

Move2S3 is a key application for copying assets
to AWS S3. This is used in hybrid workflows,
i.e., to move or copy assets from MatrixStore
to S3. This can be for the purpose of backup,
content distribution, remote teams, transferring
assets from one region to another region, etc.
Where assets arrive into AWS and need to be
ingested into MatrixStore, please discuss with
Object Matrix since there are available methods.

GUI Runs on: Windows, engine runs on
Windows or and Linux.

Figure 8 - Move2 admin panel

©Object Matrix Ltd 2003-2020. All Rights Reserved. 11

M
ATR

IX
STO

R
E SO

FTW
A

R
E O

VER
VIEW

2
2.7.7 MatrixStore FTPConnect
This is an FTP server that runs on Windows or MacOSX. It translates client FTP requests into
MatrixStore API calls to store/retrieve data in the cluster.

Runs on: Mac, Windows, Linux.

2.7.8 MatrixStore S3Connect
This is an S3 gateway, it translates client S3 requests into MatrixStore API calls to store/retrieve data
in the cluster.

Runs on: Linux.

2.7.9 MatrixStore Maintenance Tool
This application is typically used by Object Matrix engineers to create clusters, inject upgrades into
nodes and to perform other low-level administration functions. One key feature of the maintenance
tool is that it can simultaneously upgrade the software in an entire cluster rather than requiring nodes
to be upgraded one by one.

Runs on: Mac, Windows.

2.7.10 MatrixStore WebAdmin Tool
This application is typically used by the administrator at the customer site to monitor a cluster and to
perform basic administration upon the cluster. Since v4 the admin tool has been fully browser based.

Runs on: Chrome, Safari.

Figure 9 - Admin info panel

©Object Matrix Ltd 2003-2020. All Rights Reserved. 12

M
ATR

IX
STO

R
E SO

FTW
A

R
E O

VER
VIEW

2
2.7.11 MatrixStore Shell
This is only available to Object Matrix support and allows shell access to the MatrixStore cluster with
a command layer. Shell access allows the support engineer to perform low-level engineering tasks.

Runs on: Mac, Linux.

2.7.12 Samba / NFS
MatrixStore has a SMB(CIFS) interface that runs as a gateway. It’s currently based on SAMBA v4.2,
with supports SMB v3.0, v2 and v1 access.

•	 Provides file system access without needing to install special software on client machines

•	 Optionally launch multiple Samba servers against different MatrixStore vaults when wider
bandwidth is required

•	 Runs on MatrixStore Hub hardware (See configurations)

•	 Centralised control of multiple Samba servers and user access rights via the MatrixStore
Administrator application

•	 Supports SMB and CIFS protocols

•	 Can be installed with failover configurations

 Additionally a MatrixStore NFS interface provides access via the NFS protocol.

Runs on: Linux.

2.7.13 3rd Party Applications
There are numerous Object Matrix partners who have integrated their products into MatrixStore
as a storage solution.

13©Object Matrix Ltd 2003-2020. All Rights Reserved.

MatrixStore
Software vs Other
Object Storage

3

No two object storage solutions are alike, but in general the following
differences can be said to be true:

MatrixStore is built
as “plug and play”
Some on-prem object storage systems are
more like projects where the end user gets
caught up into a high maintenance cycle of
understanding, installing and maintaining the
product. MatrixStore is typically delivered on
well defined, well tested (due to the 100’s of
similar node configs installed) hardware, and
ready to use. Many object storage systems
are designed to be configured for B2C use
cases that may require various levels of object
caching whereas MatrixStore is built for media
customers and the internal and B2B use cases
that customers have there.

MatrixStore is built with
future expansion in mind
This is a broad claim, but we frequently see
solutions where although you can expand the
solution with new nodes or metadata servers,
when those nodes or metadata servers have
different characteristics or performance (e.g.,
new generations of hardware) the solution
requires all nodes to be updated or replaced.

3.1

3.3

3.2

The MatrixStore architecture makes each node
self-sufficient for the data and metadata that
it holds and is loosely coupled to other nodes
in the cluster, and therefore the architecture
doesn’t care if another node is slower or faster
than itself.

This makes future expansion a key benefit of
MatrixStore over other solutions.

MatrixStore is built for
Media Data Assets
Object Storage is often built with one or both of
the following in mind:

•	 B2C – therefore very focused on flexibility /
data caching / billions of objects

•	 Erasure coding – therefore trying to keep
hardware costs down at the expense of
speed of access and often software features

In the case of B2C the trade-off is normally that
the storage is very simple – often without digital
content governance, process in place and fully
searchable distributed DB’s that MatrixStore
provides. Erasure coding has huge side effects
around rebuild times, contiguous file reads, and
general system load in stressed circumstances.

14

M
ATR

IX
STO

R
E SO

FTW
A

R
E VS O

TH
ER

 O
B

JEC
T STO

R
A

G
E

3

©Object Matrix Ltd 2003-2020. All Rights Reserved.

MatrixStore is focused on keeping assets in
contiguous files to allow the fastest possible
random access, as well as a time to first byte
that is uniform and reliably fast. Some object
storage will return a file to a client through
multiple blocks that may not arrive in a first
through to last byte fashion. There are many
workflows in the media world that rely on time to
first byte and fast random access, which means
that simply will not work on erasure coded data
when that is the case.

MatrixStore is built for
Media Data Handling
The Digital Content Governance feature set in
MatrixStore, with its ability to easily manage
vaults of data, audit, replicate, lock down and
other such functionality is unique and built
around requirements from the media industry.

Process in place, extracting metadata
from assets in MatrixStore allows for further
metadata augmentation than media companies
might already have and reduces the media
company’s reliance on a proprietary asset
manager database.

3.4

3.6

3.5

MatrixStore
Metadata Handling
It cannot be stressed enough that most object
storage solutions allow the storage of metadata
but expect you to maintain an external DB of
metadata for search purposes. This search
is built into MatrixStore for ease of use,
maintenance and expansion and again harks
back to our key philosophies of ease of use
and ease of future expansion.

Open and Non-Proprietary
Vendor lock-in comes in many subtle and nasty
ways including:

•	 Proprietary databases that make it difficult
to unload / understand metadata stored.
MatrixStore makes unloading metadata
in text key-value formats and against
objects easy.

•	 Storing assets through one interface doesn’t
make them available except back through
that same interface. MatrixStore allows
(e.g.,) assets stored through the s3 interface
available through the file system interface.
This is possible because of the centralized,
used by all, “database” that is in the object
storage cluster.

•	 Global namespace lock-in – many global
namespaces are just an excuse to keep
all the ids in a proprietary database that is
accessed through a proprietary application.
It is extremely risk ridden if that application
was to be removed and if then all assets
and metadata cannot be easily accessed
and used.

•	 Cloud lock-in – where the cost of offloading
assets from a service is prohibitively
expensive.

MatrixStore is object storage designed and
built for media workflows and for B2B or
internal workflows. Other object storage provide
complex geo caching algorithms that are
designed for B2C, sell on erasure code claims
of using less hardware (whatever the reality
of hardware usage, future proofing or access
speeds) or are very simple DBs of IDs rather
than fully fledged redundancy and scalability.

15©Object Matrix Ltd 2003-2020. All Rights Reserved.

Digital Content
Governance

4

Digital Content Governance is an
extension of Information Governance
tailored for Media Assets.

Digital Content Governance (DCG) answers
the problems of “storage” by creating
an environment where assets are controlled
with an emphasis on:

•	 Security

•	 Portability

based storage system then these policies live
with the object itself. In this way and by the
asset knowing how it wants to live, the policy
becomes transportable, much as metadata
stored inside an MXF is kept with the essence.

Secondly, DCG can harvest the metadata from
within the assets making them searchable,
as well as augmenting that metadata from
external sources such as asset managers or
user provided information. This metadata should
be searchable but should also be portable –
from one system to the next and, like an MXF
wrapper, not tied to an individual application
that can quickly go out of date.

Lastly, DCG can add additional services such as
auditing when an asset is accessed or updated.

MatrixStore is therefore a Digital Content
Governance platform. It achieves this through
the usage of object storage and business logic.

governance /ˈɡʌv(ə)nəns/ noun
Conducting the policy, actions, and organization
of a state, organization, or … media assets …

•	 Defined lifetime

•	 Auto-protection

DCG is a software layer that manages the
assets, their locations, and their safe-keeping
along with other features such as search
and audit.

To achieve this DCG utilises data storage
policies. Data storage policies are generally
(but not necessarily) set when an asset is stored.
E.g., “This is an archive asset and it should
be kept both in London and New York”, or,
“this is an asset for local editing”. It is then the
responsibility DCG to look after the asset using
the data policies attached to it throughout the
lifetime of that asset regardless of hardware
failures, network down times or hardware
changes. If DCG is implemented using an object

16©Object Matrix Ltd 2003-2020. All Rights Reserved.

MatrixStore
Hardware Overview

5

Hardware from any vendor that supports Linux can be used with MatrixStore,
although only hardware that Object Matrix has qualified will be supported.
A cluster consists of nodes and switches:

Hardware is grouped into nodes:

Cluster

Node

Notes

Notes

Nodes

CPU Storage

1 Gigabit to 40 Gigabit NICs
(typically 10GbE)

1GB or 40GB switches

Minimum 3 (see below).

Dual core 2GHz and higher, 4 core minimum. Up
to 2 volumes, tested up to 960TB per node. On

Enterprise nodes this is with RAID6. V5 nodes use
Dual CPU 4110 Skylake processors.

Two for internal traffic and two for external. External
can be 1G copper RJ45 BaseT, 10G copper RJ45

BaseT, 10G SFP+ copper or up to 40Gbe.

Two for internal traffic.

One for IPMI traffic (optional).

One to Two for external traffic (all external
connectivity is supplied by the customer).

IPMI
Operating system

One port for IPMI node control (optional).
MatrixOS (based on Ubuntu Linux).

17

M
ATR

IX
STO

R
E H

A
R

D
W

A
R

E O
VER

VIEW

5

©Object Matrix Ltd 2003-2020. All Rights Reserved.

Typically Object Matrix supplies only
enterprise quality components, such as
5 year warranty HDDs.

Why a minimum of three nodes?

•	 The cluster has hardware failover at every
level (switches, networking, nodes).

•	 When a data object is stored into the cluster
it is always initially stored to 2 separate
nodes in the cluster. Therefore, a cluster
must have at least 2 nodes in operation to be
able to store data.

•	 If the cluster only had 2 nodes then writes
couldn’t continue in the eventuality of a node
being down.

Other notes about the hardware configuration:

•	 If a node goes down, data is regenerated
from the good node (that is still up) to a new
node location. This ensures that within an
allowable time period data is always kept
with two good instances.

•	 For failover there should be 2 external traffic
and 2 internal traffic NICS.

•	 Storage volumes are typically set to be
RAID6. With the data kept in two locations
(both RAID6), a minimum of 6 disks would
need to irrecoverably fail for data loss to
occur, furthermore, that failure would have
to occur before data has a chance
to regenerate.

•	 Nodes are typically configured with mirrored
system drives. System drives can be used
to hold the operating system, system logs
and some data that is shared between
multiple nodes.

•	 300 million metadata entries per node

•	 CPU speed: Recommended to use at least
quad core 2GHz, preferably higher. Modern
architectures should consider dual Skylake
4110 or Cascade Lake 4120 CPU.

•	 Cluster is designed for up to 120 nodes
(115PB), however, there are no hard and fast
reason not to go above that number. Cluster
is tested up to 40 nodes.

•	 Time for the cluster to self-heal is a
calculation based upon the size of the node
that has gone down ÷ the number of nodes
in the cluster ÷ internal NIC speeds. Or: the
smaller the size of each node and/or the
more nodes there are, the faster regeneration
will be.

•	 The more nodes there are the greater the
bandwidth of Ethernet connections to
external connections to the cluster. A “fast”
cluster should therefore have low amounts
of storage per node, a “high density” cluster
should have high amounts of storage.

RAID Control

Memory

Size

Hardware based for performance and reliability.
Capacitor and flash backed RAM.

64GB per node (minimum of 4GB).

Unrestricted but typically 24TB to 960TB.

18

M
ATR

IX
STO

R
E H

A
R

D
W

A
R

E O
VER

VIEW

5

©Object Matrix Ltd 2003-2020. All Rights Reserved.

External Traffic

Internal Traffic

External Maintenance Traffic

Examples

Examples

Examples

API, ports 1907, 1908

Management API, ports 666, 667

SSH, port as allocated

Management API, port 667

API, ports 1907, 1908

Secure Socket Layer (SSL),
port 8443

Write and read operations.

Vault creation, user modifications.

SSH should normally be switched off.

Vault creation, user modifications.

Write and read operations.

For Vision traffic only

5.1

Networking
Client machines access the cluster via IP addresses. Nodes within the cluster contact each other via
the internal network.

Figure 10 - Nodes front and back

19

M
ATR

IX
STO

R
E H

A
R

D
W

A
R

E O
VER

VIEW

5

©Object Matrix Ltd 2003-2020. All Rights Reserved.

When configuring a MatrixStore it is essential to:

	 Assign an internal and external IP address to each node.

	 Ensure that firewalls within the network do not block traffic on any of the above external or
	 internal ports*.

	 Ensure that each node can see each other node via Ethernet networking, both within the
	 internal and the external networks.

When configuring MatrixStore it is normal/strongly recommended to:

	 Configure one (or two for failover) network interface ports to be dedicated to internal traffic.

	 Configure one (or two for failover) network interface ports to be dedicated to external traffic.

	 Dedicate one (or two for failover) switches to internal traffic, and thus isolate internal traffic
	 from the rest of your organisation’s network.

Switches will typically be unmanaged Ethernet. As standard, Object Matrix implements failover on
the switching using switches that support IEEE 802.3ad.

Data transmitted over the internal network is not encrypted. Therefore, internal switches should be
physically isolated and protected. Because the internal switches sit behind the nodes, compatibility
with switches in the rest of the client’s network is not required.

1

1

2

2

3

3

5.2

Virtual MatrixStore
MatrixStore can be configured on virtual machines for the purpose of testing.

20©Object Matrix Ltd 2003-2020. All Rights Reserved.

6 MatrixStore
Core Concepts

Overview
MatrixStore is an object based storage solution.
Every object based storage solution has
strengths and weaknesses that are a result of
underlying architectural decisions and project
aims. MatrixStore includes the following high-
level ambitions:

•	 Scalable solution to 100’s of Petabytes; not,
scalable to Exabytes (e.g., Amazon).

•	 Hybrid solution usage: fast object storage
that also delivers full speed filesystem
access - the solution provides exceptionally
fast random access to objects.

•	 Provides the highest levels of data security
and data protection.

•	 Object storage with full search capabilities
(many object stores have very limited
search).

•	 Completely plug and play architecture for
easy on-premises maintenance, expansion
etc.

•	 For 100’s of simultaneous users rather than
“millions”.

•	 Object storage via data + metadata + data
storage policy control.

•	 Full suite of data services including search,
metadata handling, replication options, self
healing and full support for an eco-system
of client applications.

•	 Capable of mixing different hardware nodes,
e.g., as a result of scaling the cluster over
a number of years.

6.1

•	 Process-in-Place: augmentation of
metadata and artificial intelligence.

6.1.1 Why archive to disk?
Disk is a proven well-understood technology
with good transfer speed and excellent
random access. File systems are also well
established. However, in terms of archive
for large organisations the challenge comes
when 1000s of disks need to be managed
as storage locations, including the challenges
of authenticating that data is maintained
bitwise exact.

Normally on disk based solutions:

•	 Large scale disk solutions are difficult to
manage, e.g., 500TB+ SAN solutions.

•	 Bad administration can very easily lead to
malicious or accidental data loss.

•	 Solutions become outdated and data
needs to be transferred to the “next
generation” solution.

•	 Downtime is caused by individual
component failures.

•	 Transferring data offsite, search, firewalling,
etc., requires separate software modules,
each of which might result in data loss and
downtime when upgraded or broken. Over
time, the systems become disjointed as
individual components become out of date.

MatrixStore has software augmented solutions
to overcome each of those challenges.

21

M
ATR

IX
STO

R
E C

O
R

E C
O

N
C

EP
TS

6

©Object Matrix Ltd 2003-2020. All Rights Reserved.

6.1.2 MatrixStore “Services”
MatrixStore software is designed from the inside out to support the requirements of Nearline
storage and medium to long-term archive. Normal file systems provide only basic software
services (such as write and read of a file).

Object Based Storage
It wasn’t so long ago that just about all data
was stored within a file system, but as the scale
of data storage has increased dramatically, so
the rise of object based storage has become an
essential part of keeping digital media assets.
Examples of object based storage include
Amazon s3, Cloudian, Google, Facebook,
Scality, Microsoft Azure, to name but a few
systems. Object based storage has the
following fundamentals:

•	 Like files, objects contain data, but unlike
files, objects are not organized in a hierarchy.
Every object exists at the same level in a flat
address space (sometimes called a storage
pool).

•	 Objects can also represent records rather
than data files.

MatrixStore adds multiple software services:

•	 Secure / ‘firewalled’.

•	 Near zero maintenance, e.g., to scale/to
manage large volumes of data.

•	 Provides guarantees about the delivery
and storage of data to and from the disk.

•	 Monitors the archive for hardware failure,
taking automated actions where required.

•	 Fast.

•	 Searchable.

•	 Scalable.

•	 Process-in-place.

•	 Stubbed objects (for archive).

•	 Replication.

•	 Easy to roll-in/roll-out technologies into
the pool of storage as time goes on to
name but some.

6.2

Disk based archiving is a proven way of keeping large amounts of data as shown by modern object
stores such as Amazon S3 or Microsoft Azure.

MatrixStore has significantly more than 100 man years of development and has been proven by long
running customers in the media sector.

•	 Both files and objects have metadata
associated with the data they contain, but
objects are characterized by their extended
metadata. Each object is assigned a unique
identifier that allows the server or the end
user to retrieve the object without needing
to know the physical location of the data.
This approach is useful for automating
and streamlining data storage in scalable
environments.

•	 Within MatrixStore, the user never needs
to know the unique identifier, since the
metadata can be used to look up the object.

•	 Objects are self-describing: unlike in a file
system where should metadata servers
blocks of data are individually meaningless,
object based solutions are highly resilient to
data loss through their very atomicity.

22

M
ATR

IX
STO

R
E C

O
R

E C
O

N
C

EP
TS

6

©Object Matrix Ltd 2003-2020. All Rights Reserved.

On top of massive pools of objects virtual
views can be built to view the data. One view
of a bunch of objects might be from an asset
manager, another view might be a file system
view. However, in order to support file system
views the underlying object based storage
solution must support expected file system
behaviours, such as response times.

Under the hood, a MatrixStore cluster actually
stores objects in numerous file systems.
Benefits of this are:

•	 Proven technology.

•	 Low interdependency between objects.

•	 Scalable over main nodes.

Negatives:

•	 MatrixStore keeps indexed metadata with
objects stored – there is a small cost (space
and time to index) when an object is written.

•	 MatrixStore bit checks correct receipt of data
when written – there is a small overhead for
the check summing (that can be adjusted
by the user to the level of check summing
required).

•	 MatrixStore mirrors data when it is stored –
there is a small overhead for flushing data
to two locations over flushing to a single
location.

MatrixStore is designed for the storage of
millions of objects.

When data is stored into MatrixStore it is stored
as an “Object”. An Object instance consists of
the original data in an unchanged format and
an associated metadata file containing user and
system attributes for the object.

All data is stored into virtual constructs called
“vaults”. A vault contains meta attributes
pertaining to the handling of objects within
that vault, such as whether those objects must
comply to regulations (See “Enforcing the
longevity of data”) or whether data should be
replicated, etc. In effect, that set of policies can
be considered to be attached to each object.

Object Metadata
Object metadata is used by MatrixStore and by
users for different purposes. Users generally use
metadata to identify objects, but may also use
metadata to hold attributes about the object.

MatrixStore servers uses metadata to perform
system tasks, such as to authenticate that a
corruption hasn’t occurred within the data file.

Object metadata is primarily stored in
two locations:

	 In “flat file” format along with the
	 object itself.

	 In a searchable database.

The “flat files” are stable and are generally
stored alongside the data files. The contents of
the flat file is a standard Java HashMap, wherein
the keys are ASCII-US text, and the data is the
binary characters representing the value of the
attributes. Since each object stores its own
metadata in its own file, corruption in one will
not affect another, however, the downsides are
the filesystem overhead of storing extra files as
well as storage speeds if many attribute updates
are made to an object. It is not expected that
rapidly changing attributes (e.g., a counter) will
be stored within MatrixStore objects.

Every node stores a database of all of the
metadata upon that node. This allows for
distribution (as clusters grow) and low levels of
interdependency between nodes. Should the
database become corrupt, it can be rebuilt from
the metadata files on the node.

Metadata can be attached with two types of
identified to an object:

•	 System attributes are used internally and are
not commonly returned to the user.

•	 User attributes are those added by the user
and/or 3rd party applications (e.g., 3rd party
MAM).

6.3

1

2

23

M
ATR

IX
STO

R
E C

O
R

E C
O

N
C

EP
TS

6

©Object Matrix Ltd 2003-2020. All Rights Reserved.

When stored, attributes can be tagged as
searchable or non-searchable. Only searchable
attributes are added to the server database.

There are two types of searchable databases
in the cluster – in-memory for fast search (such
as filesystem attributes) and content search for
more complex search, e.g. “cam*” to find all
matches beginning with “cam”.

MatrixStore (v3.1 or newer) also extracts
metadata (and can extrapolate additional
metadata) from the contents of objects.
This is called “process-in-place” (PiP).

Vaults
Any object stored in MatrixStore is in fact stored
into a logical entity called a vault. As many
vaults as required can be created in a single
cluster (Object Matrix tests for up to 2000 vaults
per cluster, but can test for higher numbers of
vaults should there be a requirement to do so).
Vaults are intended to be used:

•	 One per project.

•	 One per department.

•	 One per data type or workflow.

•	 One per customer.

Vaults are not normally intended to be used per
user, rather, per user group.

When a vault is created it can be given a set of
properties dependent on the data to be stored
within it. Those attributes are:

•	 Provisioned Capacity (see section below).

•	 Object Policies.

•	 Replication settings.

•	 Group access settings.

•	 Compliance settings (data retention
period, retention policies).

•	 Audit settings.

6.4

Via vaults, MatrixStore supports “Multiple
Tenancy” and can provide limited statistics for
companies wishing to implement chargeback
mechanisms for vault throughput / storage
space usage.

Vaults are created / modified via the
Management API. This is called from the
MatrixStore WebAdmin.

Security between vaults is stringent (see
Security section), therefore the system
administrator is not allowed to write / read / etc
data within a vault, but he does have permission
to reset the vault administrator’s account.

6.4.1 Vault Provisioned Capacity
It is possible to set and update a boundary on
the capacity that a vault can consume within
the cluster.

Should the provisioned capacity be exceeded
the users of the vault will not be able to perform
any further write operations until such time as
the provisioned capacity is extended or the user
deletes existing data in their vault thus freeing
up capacity.

It is also possible to set the provisioning to be
boundless, as such a vault can grow and grow
as long as there is cluster capacity available.

Capacity is not reserved for the vault, thus,
many vaults could be given a “1000TB”
provision, even if only “100TB” of storage space
is available on the cluster.

The system will allow writes until that capacity
has been exceeded. i.e., if the last object
written is a very large object, it could be that the
capacity is significantly exceeded, but then the
next object write will fail.

6.4.2 Vault Audits
It is possible to select whether to audit reads,
writes, and / or deletions at a vault by vault

24

M
ATR

IX
STO

R
E C

O
R

E C
O

N
C

EP
TS

6

©Object Matrix Ltd 2003-2020. All Rights Reserved.

level. Audits on objects allow admin to see the user, date and time, IP address and action on the
objects. The cost of auditing is a space and indexing overhead, so they should be switched off on
vaults where auditing is not required, e.g., if performance is the primary concern.

Audit Notes

Reads

Writes

Deletes

Track when an object is read; typically only switch
this on where data is sensitive.

Track when an object is written; typically switch this
off if performance is more important that being able

to track objects.

Track when an object has been deleted; this is
typically set on.

All audits for a vault are removed when the vault is deleted.

6.4.3 Vault Integrity Level
Users can select the “integrity level” on a vault, i.e., the checksum used during data transmission to
and from the vault.

Integrity Level Notes

Fast / DCC

Medium / Adler32

Strong / MD5

DCC is a very lightweight checksum that spot checks
data has been correctly received in the cluster from

the client. It should only be used where performance is
paramount.

Typical checksum used. The chance of an object having
been received incorrectly and for this checksum failing to
notice the incorrect receipt is extremely unlikely and is in

the region of 1 in 65,000.

If performance is less important and there is a high
chance of corruption during the transmission of data then

a very high vault integrity level should be used.

25

M
ATR

IX
STO

R
E C

O
R

E C
O

N
C

EP
TS

6

©Object Matrix Ltd 2003-2020. All Rights Reserved.

6.4.4 Object Longevity Guarantees
Users can select the “integrity level” on
a vault, i.e., the checksum used during data
transmission to and from the vault.

When designing MatrixStore to hold archive
data, it was seen as essential to allow users to
lock down data such that it cannot be deleted
for a period of time or even forever.

Locked data is effectively read-only for a fixed
(or administrator adjustable) amount of time.

This can be useful for a multitude of reasons:

•	 To protect against viruses/malicious users.

•	 To protect against human error (oops! Just
deleted the data in the wrong vault type
errors).

•	 To comply to a multitude of government
and/or industry regulation compliance
requirements.

When the user creates a vault the vault object
is set to have a compliance attribute. The
compliance attribute can be set to be on or off.
If on, the amount of time that the data is stored
for can be modifiable or extendable only.

When compliance is on, any object stored
cannot be deleted for the period of time
indicated in the vault.

If the setting is extendable only then the
length of time that was selected can only
be increased (not decreased). This means that
the administrator cannot quickly change the
setting, delete a file and then change the setting
back again.

If the setting is modifiable, then an administrator
can change the setting to then delete a file.

Data will not automatically be deleted when
the longevity date / compliance threshold
has expired.

MatrixStore allows metadata pertaining to
objects to be modified at any time.

MatrixStore implements the compliance setting
at a vault level. When a user wishes to perform
an action such as a “delete” the settings of the
vault are checked, by the MatrixStore Services
layer, before allowing the delete to occur. This
effectively stops users without physical access
to hardware from being able to delete objects
that have been stored protected.

Notes
Although the “modifiable” setting doesn’t
guarantee data longevity against user actions,
it does however guarantee that any non-
system administrator will not delete data, and is
therefore popular in smaller companies.

Figure 11 - Object longevity diagram

26

M
ATR

IX
STO

R
E C

O
R

E C
O

N
C

EP
TS

6

©Object Matrix Ltd 2003-2020. All Rights Reserved.

MatrixStore Regulation
Compliance
Government regulations often include
requirements/ guarantees to be made about
the way in which data is handled, accessed,
security protected, protected against loss,
protected against accidental and/or purposeful
deletion, searched, stored, audited and
authenticated.

MatrixStore helps to support, amongst
others, the:

•	 Security and Exchange Commission Rule
17a.4 that aims to prevent overwriting,
erasure or alteration of records.

•	 HIPAA privacy ruling for Data Protection,
requiring compliant backup methodologies
to ensure the security and confidentiality of
patient records.

•	 The Sarbanes-Oxley Act of 2002 protecting
investors by improving the accuracy and
reliability of corporate disclosures. The Act
amends mail and wire fraud infractions with
harsher punishments and imposes fines
and prison sentences of up to 20 years for
anyone who knowingly alters or destroys
a record or document with the intent to
obstruct an investigation.

The set-up of a vault should be governed by
the classification or type of data to be stored
in that vault in accordance with any internal
or legislative requirements. Once set-up, data
stored into that vault will be enforced to comply
with that set-up.

MatrixStore achieves compliance via
functionality implemented in the server layer and
the client:

Data Immutability
•	 MatrixStore can lock down data and can

be set to disallow any updating of objects
archived.

6.5 Data Longevity/Non-repudiation
•	 Vaults can be set such that data cannot

be deleted for a period of time. The
MatrixService layer enforces adherence
to the policy. The period of time cannot
be changed if the vault is set to be
unchangeable.

•	 Different vaults can be set for different
data types.

Data Security
•	 Communication with MatrixStore can be up

to 256-bit asymmetrically encrypted.

•	 A public key encryption mechanism is used
such that data sniffing, data modification,
and replay attacks are protected against.

•	 Vaults can be created so that the system
administrator does not have access to the
data, only the vault users.

Audits
•	 All actions on vaults/data may be audited.

•	 Audits can be set to include/exclude read
operations.

•	 Audits are maintained, secured, and
protected to the same levels that data
objects are.

Search
•	 Data may be searched back using metadata

labels.

Trusted 3rd Party Verification
•	 Data may be replicated offsite, where

appropriate, to a trusted 3rd party.

Data Protection and Authenticity
•	 Data and hardware is automatically

monitored to be correct, thus ensuring the
long-term authenticity of data down to a bit
level.

•	 Replication of data to another site ensures
protection against physical hardware attacks.

27

M
ATR

IX
STO

R
E C

O
R

E C
O

N
C

EP
TS

6

©Object Matrix Ltd 2003-2020. All Rights Reserved.

Delete
•	 MatrixStore does not currently shred

(overwrite deleted data multiple times with
zeroes before deletion), but could easily
changed to do so if that is a requirement
for someone.

•	 Vaults can be created with Trashcans that
keep data for a set period of time after
deletion where disk space is available.

MatrixStore has a very strong set of functionality
to help meet compliance requirements.

Data Compression, Data
De-duplication, CAS
Data Compression is only significantly relevant
to companies that store uncompressed data.
Object Matrix takes the view that most of
its customers are storing video format files,
and recompressing these files would be both
time consuming and fruitless. Furthermore,
compressed files cannot easily be edited or
partially restored. Client software can easily
compress data before storing; MatrixStore does
not do this automatically.

Data de-duplication is not currently a feature of
the cluster but is often carried out by the storing
client application (e.g., backup software, asset
management software). De-duplication comes
with a strong drawback – that it creates data
fragmentation. Object Matrix believes in storing
data in an open, well-established formats.

Content addressed storage (CAS), if required, is
easily implemented in MatrixStore, simply store
the data’s digest with the data object as an
attribute and use that to search back the data
when required. CAS has generally become an
out-dated concept.

MatrixStore is setup to keep data in an
uncomplicated, secure, and long-term fashion
and has a healthy disrespect for risk.

6.6

External Services
To allow nodes to act coherently in
a loosely coupled, self-supporting and
scalable architecture server software runs
on each node providing a set of services.

Internal services are covered in the Tasks
section of this document. Some tasks that
run in the cluster provide services that can be
accessed externally, such as SNMP messages,
and security services. Examples of such
services are:

6.7

6.8

External
Service Notes

MAPI,
User APIs

Sense

SNMP Service

Management APIs, user
APIs. E.g., to perform

security actions, to
check node status, to

search data.

Provides statistics on
cluster usage.

Provides SNMP status.

Search
MatrixStore is extremely efficient at searching
for metadata since it takes advantage of
distributed search across the nodes and
an optimised (for metadata) database.

MatrixStore is designed to allow up to 300
million entries into a DB, per node. A typical
cluster can handle and respond to thousands
of search requests per second with zero to
low impact on other concurrently occurring
operations.

28

M
ATR

IX
STO

R
E C

O
R

E C
O

N
C

EP
TS

6

©Object Matrix Ltd 2003-2020. All Rights Reserved.

1

2

3

6.9

6.10

Object Encryption
MatrixStore does not automatically encrypt
the data stored, but it can encrypt data during
transmission. If encryption is required, then it
should be carried out in the client software layer
and should use a certificate authority whose
lifespan will outlive the archive!

Object Writing,
Load Balancing
All data written to MatrixStore is written through
the MatrixStore API. The API ensures that the
transmission is completed quickly, successful,
and when selected, securely.

The steps involved in sending data are:

	 Client initiates the construction of a secure
	 connection to the cluster. Connection can
	 be to any node.

	 Request is sent to obtain a location to
	 send the data to. Client is given a location
	 and a security certificate to send the data.

	 Client sends data to that location using
	 a direct IP link to the node.

	 As the cluster receives data at one
	 location it simultaneously relays the data
	 to a second storage location via the
	 internal network.

	 When an end-of-object indicator is sent by
	 the client to the cluster, client also sends
	 the checksum for the object. MatrixStore
	 confirms that both nodes have received
	 the correct data with the same checksum,
	 and then syncs the data to disk together
	 with any metadata and policy information.
	 A unique ID for the object just stored is
	 returned to the client.

	 The client can (if required) safely remove
	 the original copy of data, knowing that the
	 data has been correctly received and
	 flushed to disk at two separate locations.

As can be seen by the steps above, secure,
reliable transmission of data is paramount;
checksums, secure transmission and careful
multiple location sync’ing of data are not good
for performance but are key to archiving.

1

2

3

4

5

6

Thus, since the database is distributed, it
scales in capacity as the cluster scales
upwards in nodes.

MatrixStore guarantees attributes about the
database that are essential for long-term cluster
integrity and low-maintenance:

	 That the database can be rebuilt from the
	 objects stored. That is to say that the
	 object’s metadata is stored within each
	 object as well as within the database.

	 That should a component part of the
	 database become lost or corrupted,
	 that the database as a whole can continue
	 to function.

	 That the database does not become
	 slower, or require “tuning” as the number
	 of metadata items it holds grows.

Some organisations may require or intend to use
high numbers of metadata items. The metrics
around the number of metadata entries vs node
storage capacity may have an effect on cluster
configuration selections.

Under the hoods, MatrixStore actually contains
two distributed databases – one that is used for
fast metadata search such as metadata used
for file system information and one that can be
filled with unlimited search metadata, such as
content metadata. The content metadata can be
searched using normal absolute values or using
fuzzy search (e.g., searching for “Welsh Rugby”
would also find misspellings or alternatives such
as “Walsh Rugby”, “Welsh Rygbi” etc.) The
content database is also filled with information
discovered by Process In Place.

29

M
ATR

IX
STO

R
E C

O
R

E C
O

N
C

EP
TS

6

©Object Matrix Ltd 2003-2020. All Rights Reserved.

Type

Factor

Notes

Notes

Secure

Disk space
remaining

Unsecured

Recent activity

Asynchronous

Data is up to 256-bit encrypted when sent over the connection.
Note that MatrixStore builds are also available for territories with
export restrictions that include lighter or no encryption options.

The packets are encrypted with their own keys, with the key being
changed during each handshake with the cluster. Data transmission
is therefore strongly protected against sniffing and replay attacks.

Nodes with the most disk space remaining are preferred to those
that are almost full.

Only the connection to the cluster is secured. Unsecured
transmission is faster than secured transmission, although the

difference in speed depends on the hardware used (50% is typical).

To a lesser extent, load is spread so that the entire cluster is used
(not just the most empty nodes).

Either of the above options can be used in an asynchronous mode.
Using this option the client continues to stream packets to the server

without waiting for ACKs, but rather, checking that the server has
received the correct data at checkpoints.

Load balancing is essentially carried out on a round-robin basis, though the algorithm can also takes
the following factors into account:

Data will always be stored in two separate nodes. Thus, should a node go down, the data will be
available for reading from the second location. The user can however select that a vault keeps only
a single instance of data. If that is the case then once the data received has been verified (ie, read
back from disk) then one instance of the data will be removed.

Note that since data is kept in two locations if massive multiple user read access is required then
a read cache should be used in front of the storage. This is typical in VoD (Video on Demand) type
services where an individual film may be being watched by 10,000’s of end users.

When data is sent through the API to be stored, it is sent together with metadata and policy
information. This information is stored together with the data to form an object instance.

Data is stored in a non-proprietary format on the disks.

Data transmission options are:

30

M
ATR

IX
STO

R
E C

O
R

E C
O

N
C

EP
TS

6

©Object Matrix Ltd 2003-2020. All Rights Reserved.

6.11

6.13

6.12

Performance
Unlike file systems which typically go through metadata controllers (which then become the
bottleneck), via TCP/IP connections, one client writing data to one MatrixStore node will not
affect the performance of another client writing data to another MatrixStore node.

Latest performance figures are available on request.

Object Identification
Every item of data stored is stored as an object. Every object is given an unique ID by MatrixStore.
The ID is a 256 bit unique identifier (in an ASCII printable format).

When an object is stored, and the ID returned, the client may select to store the ID in a database
to be able to retrieve the object at a later date. However, it is not necessary to do so if enough
metadata has been attached to the object to allow it to be identified via that means. E.g., the storer
may wish to attach its own ID to the object and use that as the means to retrieve the object. Whilst
requiring an extra round trip between the client and the server to start reading the object (the first
round-trip being to perform a search, the second to retrieve the object), the high speed of searching
means that this is still an excellent way to retrieve data.

Object Reading
As with writing data to MatrixStore, all read operations pass through the MatrixStore API. The
MatrixStore API enforces that the connection is made with the correct security credentials and then
that the transmission of data is both checksummed and secure.

The following steps take place during reading data:

	 Client initiates the construction of a secure connection to the cluster.

	 Request is sent to obtain the locations from which to read the object from.

	 Client reads data from one of those locations using a direct IP link to the node.

The cluster load balances reads using a simple random selector to select from which node the
client should read the data.

1

2

3

31

M
ATR

IX
STO

R
E C

O
R

E C
O

N
C

EP
TS

6

©Object Matrix Ltd 2003-2020. All Rights Reserved.

6.14

6.15

Quality of Service
SNIA define QoS as “A technique for managing computer system resources such as bandwidth” …
“Policy rules are used to describe the operation of network elements to make these guarantees.” …
“RSVP allows for the reservation of bandwidth in advance”.

MatrixStore does not provide QoS electing rather to serve data as quickly as possible rather than to
guarantee a steady stream of traffic.

MatrixStore should not be seen as a playout server, rather, it can provide the playout server with all
the data it requires. For example, a data centre topology may have:

Security Overview
From the inside out MatrixStore was built with security in mind:

•	 Security is included “out of the box” without requirement for specialist training or knowledge.

•	 Security is on the logins, data transfer, and on the node firewalls.

•	 Security is simple: because the only access allowed is via the APIs any security hole would have
to exploit those APIs which is highly controllable.

Figure 12 - Quality of service diagram

32

M
ATR

IX
STO

R
E C

O
R

E C
O

N
C

EP
TS

6

©Object Matrix Ltd 2003-2020. All Rights Reserved.

6.15.1 Security – Firewall
The ports required by MatrixStore are 666, 667,
1907, and 1908. They use protocols designed
for MatrixStore only, and communications over
these ports are fully secured. Port 8443 is used
by MatrixStore Vision.

The Linux operating system build has been
stripped down to remove all applications from
the operating system that could communicate
over other ports. Since there is only a minimum
of background processes that are running,
the node is stable as a reliable long-term
storage device.

When installing MatrixStore, it is optional to
leave an ssh port open on the cluster. If left on,
the system is only as secure as the password(s)
on that port. It is therefore recommended not
to leave an ssh port open. It is recommended
to allow access to ssh for Object Matrix
maintenance operations.

Note that if the company installing MatrixStore
has a firewall installed in the data centre, then it
must be adjusted to allow for traffic on the ports
used within MatrixStore.

6.15.2 Security – Data
Communications1

Every client that talks to the server uses the
MatrixStore’s API in that connection (important:
see footnote). The connection sets up a PPK
type connection, the sequence of events being:

	 Request and agree up to a 256-bit secure
	 channel to communicate with the server.

	 Pass a 256bit password over this channel
	 for access to the vault.

	 Transmit any data. Data is up to
	 256-bit encrypted.

	 On the handshake of each packet, agree
	 the encryption code for the next packet.

	 On receipt of a packet, de-encrypt (against
	 previous handshake).

	 (Until end of communication).

Thus,

	 All communication is encrypted
	 and authenticated.

	 Replay attacks will not work (due to
	 evolving keys).

	 Packet decryption over long time packet
	 sniffing is difficult due to the usage of
	 evolving keys.

	 Data can be safely sent over the Internet,
	 and indeed the whole cluster can safely be
	 placed on the internet.

To encrypt data the Helix algorithm is used.
The security solution has been built to allow
other algorithm’s to be plugged in as required.

Whilst it is desirable to encrypt the traffic of
data to and from the server, the act of doing
so generates CPU overhead at both client
and server sides. In situations where data does
not need to encrypted, encryption may be
switched off.

6.15.3 Security – User Types
Data is stored and accessed within logical
constructs called “Vaults”. A client with access
rights to a Vault has access to that and only that
Vault (i.e., unlike groups in UNIX type systems).
Thus, a client will need to maintain separate
access credentials if he/she wishes to access
different Vaults on a MatrixStore archive.

Vaults can be organised as required, e.g.,
one vault could be for pre-production data,
another for post-production data, another for
customer-x, and yet another for the accounts
department.

1

2

3

4

5

6

1

2

3

4

1	MatrixStore version for export to restricted territories does not include these options.

33

M
ATR

IX
STO

R
E C

O
R

E C
O

N
C

EP
TS

6

©Object Matrix Ltd 2003-2020. All Rights Reserved.

Access credentials for a Vault can provide read, write, delete and/or search capabilities for that vault.
Thus, a customer could be given read only credentials for a vault relating to the customer.

There are also several special pre-defined user roles that have special roles in MatrixStore clusters:

User Type

Vault User

Notes

Notes

Cluster Admin

RWDSU

Space Admin

Be assigned fine
grained Capabilities

Vault Admin

This user can run certain administration tasks on the cluster, can
shutdown the cluster, and (v4.2) can create / modify / delete Spaces
(Spaces are groups of Vaults and users – e.g., for when a cluster is

used for multi-tenancy).

Be assigned read, write, delete, search and update metadata
permissions.

V4.2 – can administer a Space including the creation of Vaults within
a space.

V4.2 e.g., capability to be able to be able to create a Vault form,
capability to be able to download hi-res video in Vision etc.

Can configure/modify a vault’s settings.

Within a vault users can:

6.15.4 Security – Viruses and Human Error
Most disk based archive or mass storage solutions are extremely vulnerable to viruses and/or human
error. A virus with access to a volume could quite easily delete the content of an entire archive.
Likewise, a human error, e.g., typing “rm –r *” at the wrong location, could easily lead to data loss.
MatixStore is built to avoid such losses.

All communications to the cluster go via secure protocols. A virus would need to have intimate
knowledge of the protocol and even then would need to have the right security credentials.

Furthermore, all data can be stored as immutable for a determined amount of time thus stopping
data from being accidentally and/or deliberately deleted.

34

M
ATR

IX
STO

R
E C

O
R

E C
O

N
C

EP
TS

6

©Object Matrix Ltd 2003-2020. All Rights Reserved.

6.15.5 Security - Adding Nodes
To avoid rogue nodes trying to attach themselves to the cluster as a malicious entity or simply before
the administrator is ready to start using the node, new node attachment to an existing cluster is
a two stage process:

	 Install MatrixStore software on the new node, and physically attach the new node to the other
	 nodes in the cluster.

	 Use the Maintenance tool from a client machine to add the node to the cluster. This requires
	 a system administration password.

1

2

6.16

Maintenance – Storage Space Configuration
Neither a node nor the cluster should ever be allowed to run out of storage space.

At a cluster level, ideally, there should always maintain enough space into which to recover data
should there be a single node failure. If there is less space remaining that this, the cluster has
an “amber” status.

A cluster will always be considered full if there aren’t at least two nodes left with disk space
available. At that stage the cluster will no longer accept data writes.

At a node level, the server will fill a node to 97% capacity. This allows space for log files, auditing,
attribute changes and database space. A node that is full will no longer be selected for writes. Note
that an admin can adjust this amount of headroom in the administration tool.

A rough formula for calculating whether the cluster goes to amber status (in a cluster with equally
loaded, equally sized nodes) is:

	 If (space_remaining - space_remaining_on_one_ node) < (total_space * 97%) /
	 num_nodes -> “amber”

Or, where disks are empty:

	 % space available = n-1/n where n = number of nodes.

Or, if there are 4 nodes keep 25% free. If there are 10 nodes, keep 10% free, etc.

MatrixStore server software contains a registration key license that also limits the amount of space
available for use. This allows Object Matrix to freely distribute the software for trials.

Concerning adding storage capacity, the system is only tested for adding extra nodes – Object
Matrix does not currently support changing the capacity available on a single node.

35

M
ATR

IX
STO

R
E C

O
R

E C
O

N
C

EP
TS

6

©Object Matrix Ltd 2003-2020. All Rights Reserved.

6.17

Server Tasks
On each node a number of background tasks run to check and maintain the integrity of the data on
the cluster. These tasks include:

•	 Self-healing.

•	 Data replication.

•	 Data verification.

•	 Regulation compliance.

Tasks run in the server layer and can be controlled, to some degree, via the administration screens.
E.g., some tasks may be paused, or forced to run immediately.

MatrixStore version 3.3 and newer allows the replication task to be scheduled, e.g., to run overnight.

6.17.1 Data Integrity and the Verify Object Task
When an object is stored to the cluster it is mirrored to two nodes. Transfer checksums verify that
the correct data was received at each location and disk flushing is completed before the object
ID is returned to client application, however there is a chance that there are underlying disk block
corruptions (it is a known that RAID cards are not always able to detect nor recover from such
situations, Robin Harris on StorageMojo has several interesting articles on this subject from in-the-
field surveys). Therefore, when an object is stored it is listed to be verified.

The verify object task will, approx. 20 minutes after the object has been written, verify the object to
see that the checksum matches the contents. Should a corruption be noticed, then the object will be
moved to a corrupt objects folder, and a replacement will be retrieved from the other mirror copy of
the data. If both versions are corrupt (which would seem extremely unlikely) then both copies are
left untouched.

An interesting question is how often should objects be rechecked for correct integrity? Too often and
the risk is that hardware failure may be invoked by constantly running disks, too long and corruptions
may go unnoticed before both copies have become corrupt (or the good node has been replaced).

6.17.2 Self-Healing Tasks (Data Regeneration)
If a node containing a duplicate of the data is un-contactable for a set period of time then self-
healing / automated data regeneration will be invoked. The period of time here is a critical factor:
the longer the period of time, the more the cluster is in risk of a second failure that causes data the
to potentially be permanently lost, the shorter the period the more likely undesirable regeneration
will start to occur, e.g., if a node was accidentally powered down for a period of time. Typically the
timeout period is set to 14 days on a raided disk solution.

Thus, should a node be offline for more than 14 days, the other nodes in the cluster will begin to
regenerate any data that they share with that node. All nodes do this in unison, thus in a ten node
cluster, on average the other 9 nodes will hold 1/9th of the data held on the down node. If the node

36

M
ATR

IX
STO

R
E C

O
R

E C
O

N
C

EP
TS

6

©Object Matrix Ltd 2003-2020. All Rights Reserved.

is fairly large and filled to 80% full – e.g., 40TB in size, then each other node will need to regenerate
40TB * 80% * 1/9th = approx. 3TB. If data is regenerated to a new location at 400MB/s then the
regeneration period will be approx. 10 hours. This is astonishingly quick compared to just about
every other clustered storage solution out there.

It is possible to stop automated data regeneration (e.g., if you know a node is going to be offline for
a period of time). To do this, simply go to the task pane on the Administration tool, select and pause
the Regeneration tasks.

6.18

6.19

6.20

Node Re-attachment (Version 2.4 onwards)
If a node that was regenerated is reattached to the cluster then the data that was regenerated
elsewhere in the cluster, and that is on that reattached node, is moved to a “to-delete area”. The
administrator can empty that to-delete area via the administration console tasks screen.

Node Decommissioning (Version 2.4 onwards)
A node may be decommissioned because it is seen as going faulty or because it is simply being
phased out. Whilst the node could simple be switched off and unplugged, it is less susceptible
to risk to decommission the node from the administration console. (e.g., if the node is simply
unplugged, then data could be lost if another node were to subsequently fail before regeneration
took place). Also, if “Single Instance Vaults” (see below) are being used then it is very important
indeed to decommission a node rather than just switching it off.

Single Instance Vaults (Version 2.4 onwards)
When a file is copied from the client on to the cluster two copies of that file are made at two separate
locations, metadata and policy information are added, resulting in two object instances.

From MatrixStore v2.4 onwards the administrator can elect to make a vault a single instance vault, in
which case the following will occur:

•	 If the vault is a replicated vault, both instances will be stored and verified. The object will then be
replicated to the remote cluster, where another two instances of the object will be stored. At that
point the source cluster knows that one instance of the object can be replaced by a stub. Should
the good instance of the data be lost, then the stub will attempt to fetch the object from the
remote cluster to recover the data.

•	 If the vault is not replicated then once the object has been verified as not corrupt, one instance
will be replaced by a stub. Should the good node instance be lost then the data will be
permanently lost.

This powerful store and forward functionality of MatrixStore allows up to 50% data space to be
saved at any one cluster location. A vault may manually be changed from being a dual instance vault
to a single instance vault at any time.

37

M
ATR

IX
STO

R
E C

O
R

E C
O

N
C

EP
TS

6

©Object Matrix Ltd 2003-2020. All Rights Reserved.

Note that the level of data protection with
a single instance vault is strongly compromised.
Should a node in the cluster become unavailable
(e.g., via a local filesystem corruption), then data
will become irrecoverable. Therefore data should
only ever be kept “Single Instance” if there is
another copy of the data available elsewhere,
or if the data can afford to be lost.

6.21

6.22

Removing MatrixStore
Software
An archive solution should store data in an
open, and well-tested format; not in a format
that is subject to frequent change (as tape
formats are) and not one that depends on the
support of an individual company.

Since MatrixStore stores data in an open format
it is possible to remove the software, reboot the
node and then to access the data directly.

To do this:

	 Switch off all the nodes.

	 One by one, load the desired operating
	 system onto the nodes (e.g., reload Linux
	 from DVD).

	 Mount the existing file systems.

	 Create a script/application to walk the
	 file system and to collect the metadata
	 for the files into a DB, spreadsheet, or
	 other format of your choice. Example
	 applications for this are included with
	 MatrixStore / available from Object Matrix,
	 these are documented and are included in
	 the MatrixStore delivery.

Unlike many archive solutions, MatrixStore’s
philosophy is that the data is yours, and that
you should not be irrevocably tied in to the
solution.

Data Mirroring
Mirroring on a standard device usually involves
making two copies of every piece of data
stored, one on each volume (or side) of the
Raid unit.

This method has several physical advantages
for high speed throughput, but also has several
disadvantages, including but not limited to:

•	 The volumes typically have to be of the same
size.

•	 If the device is going to be rolled out, then all
of the data needs to be moved off of it first,
and then all of the indexes pointing to the
data need to be changed to point to the new
location of the data.

•	 If the device has a problem and needs to be
replaced, then data may be lost.

MatrixStore mirroring is based upon object
mirroring across independent nodes. When
an object is stored in one location, it is
simultaneously stored on at a second location.

Since mirroring is carried out at an object level
nodes/storage volumes can be of any size.

Mirroring across nodes is not optimal in
performance compared to using dedicated fast
IO throughput hardware, but it is reliable and
flexible.

1

2

3

4

38

M
ATR

IX
STO

R
E C

O
R

E C
O

N
C

EP
TS

6

©Object Matrix Ltd 2003-2020. All Rights Reserved.

6.23

Regulation Compliance
MatrixStore supports a large number of compliance requirements by ensuring that all data stored is
secured from public access, protected against loss, audited, authenticated, available at all times and
protected from unauthorised deletion.

MatrixStore helps to support, amongst others:

•	 Security and Exchange Commission Rule 17a.4 that aims to prevent overwriting, erasure or
alteration of records.

•	 HIPAA privacy ruling for Data Protection, requiring compliant backup methodologies to ensure the
security and confidentiality of patient records.

The Sarbanes-Oxley Act of 2002 protecting investors by improving the accuracy and reliability of
corporate disclosures. The Act amends mail and wire fraud infractions with harsher punishments and
imposes fines and prison sentences of up to 20 years for anyone who knowingly alters or destroys a
record or document with the intent to obstruct an investigation.

Individual vaults of data can support different regulations.

Figure 13 - Regular compliance diagram

39

M
ATR

IX
STO

R
E C

O
R

E C
O

N
C

EP
TS

6

©Object Matrix Ltd 2003-2020. All Rights Reserved.

Some of the ways that MatrixStore helps to support regulations are:

Regulation Compliance
Requirement Notes

Guaranteed retention of data for
specific amount of time

Authentication

Audit logs and log files

Security and Privacy

WORM

Accessibility

Searchability

Disaster recovery

Policy stored with data enforces that the data
cannot be deleted before its time.

A 256bit digest calculated when the data is stored
acts as a guarantee that the data is bitwise exactly

the same when it is read back as when it was
originally stored.

Configurable audit log can track writes, reads,
deletes. Log files track other system modifications.

Full network security is employed to stop replay,
sniffing, data modification and other attacks. User

access rights can be set to only give access to
certain groups of data.

Data is stored fixed cannot be modified.

Time to first byte is sub-second, even under heavy
load.

Built-in database can support many searches per
second across 100’s of millions of database entries.

Covered on two levels: by replication to a separate
cluster and data is stored on a single cluster such
that 4 disks would need to irrevocably fail before

data is at risk.

40

M
ATR

IX
STO

R
E C

O
R

E C
O

N
C

EP
TS

6

©Object Matrix Ltd 2003-2020. All Rights Reserved.

6.24

Data Replication
It is sometimes desirable for purposes of data
protection / disaster recovery (DR) / business
continuance to ensure that data is stored in
more than one geographic location.

Good replication solutions should provide the
following attributes:

•	 Simple to set-up and use = less human or
technical errors.

•	 Not tied to the underlying hardware =
flexibility and serviceable in the future.

•	 Neither operating system specific nor data
type specific.

•	 Works over standard transport protocols or
VPNs.

•	 Secure data transmission options.

•	 Scalable performance.

•	 Easy to select data that needs replicating
and data that doesn’t.

•	 Ability to replicate deletes or not to.

•	 Facilitate high availability, e.g., by allowing
Reads from either the source or target of the
replication.

•	 Facilitate fast disaster recovery in the
case that one site is lost, that work can
immediately continue at the replicated site.

•	 Objects can be optionally stubbed after a
certain amount of time has passed after
replication.

MatrixStore supports and/or facilitates each
of the above attributes. Its replication works
on an asynchronous model of transmission
to the second store. The replication is
optionally carried out over a secure (encrypted)
TCP/IP connection. Therefore, replication
communication can be carried via a public
internet provider or via a VPN / private
dedicated connection.

Individual vaults within MatrixStore can be
selected to be (or not to be) replicated. Thus,
not all the data on a MatrixStore cluster needs
to be replicated and two clusters do not need to
be the same size as one another.

In this first example we show a set up where
one vault is being replicated to another
MatrixStore, which in turn is replicating another
vault back to the first MatrixStore.

Figure 14 - Data replication diagram

41

M
ATR

IX
STO

R
E C

O
R

E C
O

N
C

EP
TS

6

©Object Matrix Ltd 2003-2020. All Rights Reserved.

A cluster topology might simply contain two clusters, but also, a cluster may receive data from
several other clusters so that, e.g., a central data repository could be created that receives data from
many branch offices. E.g.,:

The central repository vault can be attached to for reads.

Of course, replication could also be set to replicate to individual vaults at the central repository if
separation of the data is required.

Other features are:

•	 Optionally deletes can be forwarded or not. Thus the Vault at the central repository can become
a media library, whilst the original (e.g., branch) location can be kept small.

•	 A vault can be relayed onwards, such that the data added to a vault can be kept on all
MatrixStores.

Figure 15 - Data replication diagram 2

Figure 16 - Data replication diagram 3

42

M
ATR

IX
STO

R
E C

O
R

E C
O

N
C

EP
TS

6

©Object Matrix Ltd 2003-2020. All Rights Reserved.

•	 If the vault is single instance, two instances will be kept at the source cluster until one instance
is effectively forwarded to the second cluster. Thus at no time will the user have a single instance
of data. See also Single Instance Vaults, which ensure that only one copy of data per location is
kept.

MatrixStore Replication Restrictions:

•	 Two way replication is not supported.

•	 For disaster recovery situations the users of Cluster 1 need to also be kept in Cluster 2.

6.25

6.26

Management API
The Management API:

•	 Enables commands that can update / effect the whole cluster.

•	 Ensures that commands reach all the nodes, and that settings are received by nodes that were
temporarily offline when the command was issued.

The management API is REST based and includes commands such as adding vaults, changing
users, getting audit logs, changing task settings, etc.

MatrixStore API
All communication with MatrixStore goes from the client to the server using MatrixStore’s API. This
enables us to maintain security, failover, cluster discovery, retries, transport protocol selection, and
metadata control.

The MatrixStore API is available in C and Java.

Java is considered the superior API to use since:

•	 It has better performance.

•	 It supports updating an object’s data.

Full documentation for programming the API is available upon request from Object Matrix.

Figure 17 - Data replication diagram 4

43

M
ATR

IX
STO

R
E C

O
R

E C
O

N
C

EP
TS

6

©Object Matrix Ltd 2003-2020. All Rights Reserved.

6.27

6.28

6.29

Upgrading Software
Software is upgraded from the MatrixStore Maintenance tool. The tool will inject the software into all
the online nodes of the cluster and will restart them to complete the upgrade.

Cluster Monitoring and SNMP
There are three ways to monitor the health status of the cluster:

•	 SNMP traps

•	 Via the MatrixStore WebAdmin

•	 Via MatrixStore Sense

A client must register the SNMP monitor via the MatrixStore MAPI in order to receive traps.

Updateable Objects (Version 2.4 onwards)
A Vault can be created or changed to be “updateable”. Unlike other objects in the cluster, objects in
an updateable vault can be modified at any time.

This is critical for any application using random access (e.g., a filesystem interface) to write data to
MatrixStore.

Primarily, updateable vaults enable filesystem front ends to be easily implemented.

If a vault is set to be both compliant and updateable, then updates are allowed only for a short
amount of time (first 10 minutes).

44©Object Matrix Ltd 2003-2020. All Rights Reserved.

Process-in-Place7

7.1

7.2

Overview
With every node having CPU power and fast
direct access to its data it makes the perfect
place to perform media related functions such
as metadata extraction, transcode, applications
and artificial intelligence. Version 3.2 of
MatrixStore saw the first of this functionality
with the implementation of metadata extraction
from media assets. Future versions of
MatrixStore will extend this core functionality
into other areas mentioned.

Metadata Extraction
Many formats of content get delivered with
important and valuable metadata built in. Having
a storage solution that understands those
formats and that can automatically index the
metadata means people or further processes
are not required to perform the task. MatrixStore
currently supports AS11, EXIF and Adobe XMP
metadata. Using XMP as an example: XMP

files allow you to transfer your image metadata,
ratings, tags, keywords, geolocation, and
other attributes about the image outside of the
actual JPG, CR2, or other file type. The XMP
format was created by Adobe to standardize
how metadata is stored and transferred and
is a standard used by many news entities,
photographers, photojournalists, image
resellers, etc. The example shows:

•	 Media managers at remote locations add
XMP metadata to the content they are
creating.

•	 That content is sent to a central MatrixStore
repository into a vault that is configured for
XMP metadata extraction.

•	 MatrixStore PiP extracts the metadata
automatically when the cluster is not
performing digital preservation tasks. The
metadata is stored as part of the object
within MatrixStore and indexed to enable
search operations.

•	 The data is not delayed for pre-processing
nor moved for post-processing. It is
processed in place, where it lives.

Figure 18 - Process in Place (PiP) for Adobe XMP diagrama

45©Object Matrix Ltd 2003-2020. All Rights Reserved.

Index8
#
3rd Party Applications	 12

A
Archive to disk	 20
AS11	 44
Audits	 23, 26

C
CIFS	 12
Client Applications	 7
Cluster Monitoring	 43
Compression	 27
CPU	 16, 17

D
Data	 4, 5
Data Immutability	 26
Data Integrity	 35
Data Mirroring	 37
Data Replication	 40
Decommissioning	 36
De-duplication	 27
Digital Content Governance	 4, 13, 14, 15
	 DCG	 15
DropSpot	 7

E
Encryption	 28
EXIF	 44
External Services	 27

F
Firewall	 32
Fragmentation	 6
FTPConnect	 11

H
Hardware	 16

HIPAA	 26, 38
Human Error	 33

I
Integrity Level	 24
InterConnect	 10

L
Load Balancing	 28
Longevity	 25, 26

M
Maintenance	 11, 34
Management API	 42
MatrixStore Administrator Tool	 11
MatrixStore API	 7, 42
MatrixStore Clients	 7
MatrixStore Core Concepts	 20
MatrixStore Hardware	 16
MatrixStore Hub	 12
MatrixStore Maintenance Tool	 11
MatrixStore Server Software	 4
MatrixStore Shell	 12
MatrixStore Vision	 8
Memory	
	 RAM	 17
Metadata	 14, 22, 44
Metadata Extraction	 44
Move2	 10
MXFS	 9

N
Network	 18
NFS	 12
Node Decommissioning	 36
Node Re-attachment	 36
Node Software Behaviours	 6
NTP	 7

46©Object Matrix Ltd 2003-2020. All Rights Reserved.

Index8
O
Object Based Storage	 21
Object Identification	 30
Object Storage	 4, 5
Operating System	 6

P
Performance	 30
Policy	 5, 15
Ports	 18, 19
Process-in-Place	 6, 20, 44
Provisioned Capacity	 23

Q
Quality of Service (QOS)		 31

R
Reading	 30
Regulation Compliance	 26, 38
Removing MatrixStore Software	 37

S
S3	 10
S3Connect	 11
Samba	 12
Sarbanes-Oxley	 26, 38
Search	 26
Secure	 18, 21, 29
Security	 26, 31, 32, 33
Security and Exchange	 26, 38
	 Commissions	 26
Self Healing Tasks	 35
Server Tasks	 35
Services	 6, 8, 21, 27
SGL	 10
Single Instance Vaults	 36
SMB	 12
SNMP	 27, 43
Sony ODA	 10

SpectraLogic BlackPearl	 10
System Layer	 6

U
Upgrading Software	 43
User Types	 32

V
Vaults	 23
Verify Object Task	 35
Virtual MatrixStore	 19
Viruses	 33

X
Xendata	 10
XMP	 44

